69 research outputs found

    STRATIGRAPHY, SEDIMENTOLOGY AND SYNDEPOSITIONAL TECTONICS OF THE JURASSIC-CRETACEOUS SUCCESSION AT THE TRANSITION BETWEEN PROVENÇAL AND DAUPHINOIS DOMAINS (MARITIME ALPS, NW ITALY)

    Get PDF
    The Provençal and Dauphinois Mesozoic successions cropping out at the southeastern margin of the Argentera Massif (Maritime Alps, NW Italy) were deposited at the transition between the Provençal platform and the Dauphinois basin, marked in the study area by a partly preserved Mesozoic palaeoescarpment. These successions show important lateral variations occurring over relatively short distances, probably related to syndepositional tectonics. Different stratigraphic intervals of the pelagic-hemipelagic Dauphinois succession contain resedimented deposits, made up of both intra- and extrabasinal material, which provide a twofold evidence of syndepositional tectonics indicating both tectonically-triggered gravitational processes and a tectonically-driven evolution of the source areas. Two stages of syndepositional tectonics have been recognized: the first in the earliest Cretaceous, which is related to the deposition of carbonate breccias in the Dauphinois succession and to hydrothermal dolomitization of the Middle Triassic-Jurassic Provençal carbonates, and the second in the Late Cretaceous, which triggered the deposition of different detrital lithozones in the Upper Cretaceous Puriac Limestone. The cited evidence indicates that syndepositional tectonics continued to influence the evolution of the Alpine Tethys European passive margin long after the Late Triassic-Early Jurassic syn-rift stage, which caused the differentiation between the Dauphinois basin and the Provençal platform

    Syn-rift hydrothermal circulation in the Mesozoic carbonates of the western Adriatic continental palaeomargin (Western Southalpine Domain, NW Italy)

    Get PDF
    Evidence of hydrothermal activity is reported for the Mesozoic pre- and syn-rift successions of the western Adriatic palaeomargin of the Alpine Tethys, preserved in the Western Southalpine Domain (NW Italy). The products of hydrothermal processes are represented by vein and breccia cements, as well as dolomitization and silicification of the host rocks. In the eastern part of the study area, interpreted as part of the necking zone of the continental margin, Middle Triassic dolostones and Lower Jurassic sediments are crossed by veins and hydrofracturing breccias cemented by saddle dolomite. The precipitation of dolomite cements occurred within the stratigraphic succession close to the sediment–water interface. Despite the shallow burial depth, fluid inclusion microthermometry and clumped isotopes show that hydrothermal fluids were relatively hot (80–150°C). In the western part of the study area, interpreted as part of the hyperextended distal zone, a polyphase history of host-rock fracturing is recorded, with at least two generations of veins cemented by calcite, dolomite and quartz. Vein opening and cementation occurred at shallow burial depth around the time of deposition of the syn-rift clastic succession. Fluid inclusion microthermometry on both quartz and dolomite cements indicates a fluid temperature of 90–130°C, again pointing to hydrothermal fluids. Both in Fenera-Sostegno and Montalto Dora areas, O, C and Sr isotope values, coupled with fluid inclusion and clumped isotope data, indicate that hydrothermal fluids derived from seawater interacted with crustal rocks during hydrothermal circulation. Stratigraphic and petrographic evidence, and U–Pb dating of dolomitized clasts within syn-rift sediments, document that hydrothermal fluids circulated through sediments from the latest Triassic to the Toarcian, corresponding to the entire syn-rift evolution of the western portion of the Adriatic palaeomargin. The documented hydrothermal processes are temporally correlated with regional-scale thermal events that took place in the same time interval at deeper crustal levels
    • …
    corecore